评分0.0

丹道至尊

导演:焦菊隐

年代:2012 

地区:内地 

类型:印度 法国 重生 韩国 

主演:未知

更新时间:2024年11月24日 16:41

原标题:特朗普财长悬而未决 完美候选人仍“成谜”

为了实现这一伟大愿景,“梦想”号要具备远超一般科考船的极强性能。这艘总吨33000,长179.8米,宽32.8米,排水量42600吨的庞然大物,不仅续航力达到了15000海里,更是拥有11000米深的钻探能力。同时,它能够满足定员180人的日常需求,连续在海上工作120天。“梦想”号的海况适应能力也很强,不仅具备全球海域无限航区作业能力,还能抵御16级的超强台风。

“梦想”号有着几组特殊的推进器:3个尾部全回转推进器+3个首部可伸缩式推进器+1个首侧推进器。尾部全回转推进器就像汽车的后驱,可以让水里的大船如汽车行驶一般灵活,甚至能够做到原地打转。首部可伸缩式推进器相当于汽车的前驱,可以在必要时伸出,帮助大船在恶劣的天气和海况下稳稳地停靠在一个地方。首侧推进器设计在船头,它可以在船体靠近码头时伸出来,帮助大船平稳地靠岸或者离开,相当于给汽车多加了一个横向的“侧驱”,以保证在泊位空间有限的情况下也能够轻松进出码头。像这种几万吨重的大家伙,一般都需要小拖船帮忙拖进拖出码头消失的子弹qvod,而“梦想”号却像一辆拥有“蟹行模式”的汽车,依靠自身的动力就可以实现停进或开出码头的泊位。

“梦想”号采用长首楼船型,在舯部区域建有月池,形状非常引人瞩目。这是一个新型连体式双月池,既可以满足4种钻探模式的作业条件,又比传统单月池减少了航行阻力。月池正上方配备有全球最先进的新一代液压举升钻机,装机功率小、能耗低,而且钻探效率高、补偿能力强、响应速度快,可显著提高综合钻探能力。月池后方是管子堆场,与多功能共享猫道相组合。猫道是钻井作业中的一个重要设施,主要用于从钻台起放管材和钻井工具,以便作业人员可以在安全的环境下进行提放钻采工具的操作。

舯部前面区域是总面积超过3000平方米的船载实验室,可满足九大功能的实验需求。配置了国际首个船载岩心自动传输系统,从海底采集到的岩心样品可实现从钻台到出库转运的无缝衔接。除了固定的九大功能实验室,其顶部的主甲板上还建有可拆式模块化堆场。该堆场主要用于交接和保管集装箱,这些集装箱可以是一个个专门的实验室,可大幅扩展船载实验室的功能。该堆场与管子堆场相结合,能轻松实现不同堆场的多功能组合和切换。

原标题:金融赋能实体经济资本与产业对接会在京举办

近日,国家传染病医学中心主任、复旦大学附属华山医院感染科主任张文宏教授与复旦大学附属华山医院感染科王森教授作为通讯作者,艾静文教授为第一作者与共同通讯作者,郭晶鑫、林可、蔡建鹏、张昊澄及朱峰作为共同第一作者,在《国家科学评论》(National Science Review,NSR,中科院一区,影响因子16.3分)发表题为“Integrated multi-omics characterization across clinically relevant subgroups of long COVID ”的论文。

新型冠状病毒感染目前已呈常态化流行消失的子弹qvod,尽管病毒感染症状通常只持续2-3周,但自2020年来,多个报道提示10%左右患者在急性期之后会经历持续数月的呼吸困难、疲劳和脑雾等症状[1,2],世界卫生组织定义其为新冠感染后综合征,即长新冠。据报导,全球罹患长新冠的患者数量仍持续增加。长新冠症状可累及多个器官或系统,造成患者心理和精神障碍对于部分患者更可严重影响患者日常生活,并导致其劳动力的丧失,造成了巨大的公共卫生压力与社会经济负担。

本研究团队自2022年启动了完整的长新冠多中心前瞻性队列研究。通过对21826名首次感染新冠的患者的流行病学及临床特征分析,发现8.89%的患者在感染后6个月报告了长新冠症状,且其中约20-30%左右患者的症状可在一年的时候持续存在[3]。因此,揭示这些长新冠症状的发生和持续背后的免疫机制具有较大研究价值[3](Emerg Microbes Infect, 2023)。

目前国际上普遍认为机体炎症活化及免疫失调是长新冠的主要免疫致病机制之一。其中,天然免疫及体液免疫通路的异常活跃在不同研究中各有报道[4-8]。但和临床表型存在显著异质性一样,长新冠患者的免疫亚型也存在明显异质性[9-13],这为研究者深入理解疾病的致病机制造成了一定阻碍。按照患者主要呈现的临床症状区分,长新冠可分为神经长新冠、肺部长新冠、心血管系统长新冠以及系统性长新冠等。解析长新冠不同临床亚型的同质性和异质性免疫致病机制将有助于探索不同长新冠患者的特异性治疗方案,并最终协助探索长新冠患者的精确管理。

在本研究中,研究团队通过包括转录组学、蛋白质组学和代谢组学在内的多组学整合分析发现,长新冠患者整体呈现 MAPK 通路激活增高,而康复的长新冠患者则表现出该反应的下调(图1)。长新冠的异质性特征在不同亚组中表现为多组学特异性标志:多系统(MULTI)症状亚组表现为甘油磷脂和醚类脂质代谢增强,神经(NEU)亚组表现为糖蛋白合成代谢增加,心脑(CACRB)亚组表现为丙酮酸代谢增加和巨噬细胞极化受抑,肌肉骨骼+系统性(MSK+SYST)亚组表现为甘油磷脂代谢增高,而心肺(CAPM)亚组则表现为 NF-κB 信号通路受抑。ABHD17A、CSNK1D、PSME4 和 SYVN1 可被选为诊断长新冠的潜在生物标志物,而CRH(MULTI)、FPGT(NEU)、CBX6(CACRB)和 RBBP4(CAPM)则是各个相应亚组的血清特异性蛋白(图2)。该研究提供了长新冠同质及亚组之间异质性的的病理生理解释,为未来的诊断和治疗干预奠定了基础。

从全球来看,长新冠症状在人群中表现出显著的临床和免疫异质性。本研究中,所有长新冠患者无论亚组类别均表现出MAPK激活水平升高,而MAPK激活较强的患者症状持续时间更长,最长可达12个月。本研究提供的信息再次提示长新冠的诊疗需要个体化的探索,临床需要通过分子生物学等手段消失的子弹qvod,找到亟需干预的患者,而不是针对所有自诉临床症状的患者进行干预。

尽管全球科学界已初步达成共识,认为免疫失调是长新冠症状的主要潜在原因之一,但较少有研究关注长新冠不同亚组之间共同的免疫特征。本研究进一步通过结合转录组学、蛋白质组学和磷酸化蛋白质组学数据的多组学分类,识别了长新冠的5个独特免疫代谢亚组,与临床亚型相一致。本研究还发现,肌肉骨骼+系统性(MSK+SYST)亚组和 神经(NEU )亚组的一年缓解率低于其他亚组,提示这些症状的患者可能需要更长的恢复期。这一发现与此前研究发现的生物过程恢复模式不同一致[13]。目前,阻碍进一步机制研究的一个障碍是缺乏长新冠动物模型。近期一项研究成功建立了肺部病毒感染后遗症的小鼠模型,这可能极大地推动未来对潜在治疗方法的探索[14, 15]。

本研究基于大规模多组学队列,从临床以及综合转录组、蛋白质组和代谢特征方面全面描绘了长新冠的同质性和异质性,揭示了尚未完全通过临床表现分析捕捉到的长新冠各亚组的共有和独特分子与免疫机制,可能为开发个性化治疗策略开辟新路径,最终为临床实践带来益处。我们希望本文中描述的观察结果和分析结论,通过揭示患者间共享和个性化的免疫特征,为长新冠的发病机制、进展和治疗的深入研究提供丰富资源。

3.Cai J, Lin K, Zhang H, Xue Q, Zhu K, Yuan G, et al. A one-year follow-up study of systematic impact of long COVID symptoms among patients post SARS-CoV-2 omicron variants infection in Shanghai, China[J]. Emerg Microbes Infect. 2023;12(2):2220578.

4. Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210-6.

5.Santa Cruz A, Mendes-Frias A, Azarias-da-Silva M, André S, Oliveira AI, Pires O, et al. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nat Commun. 2023;14(1):1772.

6. Woodruff MC, Bonham KS, Anam FA, Walker TA, Faliti CE, Ishii Y, et al. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun. 2023;14(1):4201.

7. Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes S-S, et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663.

8. Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Bosurgi L, et al. Liquid biomarkers of macrophage dysregulation and circulating spike protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19. J Med Virol. 2023;95(1) :e28364.

9. Talla A, Vasaikar SV, Szeto GL, Lemos MP, Czartoski JL, MacMillan H, et al. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat Commun. 2023;14(1):3417.

10. Liew F, Efstathiou C, Fontanella S, Richardson M, Saunders R, Swieboda D, et al. Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease. Nat Immunol. 2024;25(4):607-21.

12. Li Y, Qin S, Dong L, Qiao S, Wang X, Yu D, et al. Long-term effects of Omicron BA.2 breakthrough infection on immunity-metabolism balance: a 6-month prospective study. Nat Commun. 2024;15(1):2444.

13. Gu X, Wang S, Zhang W, Li C, Guo L, Wang Z, et al. Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors. EBioMedicine. 2023;98:104851.

14. Li, C. A.-O., Qian, W. A.-O., Wei, X. A.-O. et al. Comparative single-cell analysis reveals IFN-γ as a driver of respiratory sequelae after acute COVID-19.  

15. Narasimhan, H. A.-O., Cheon, I. S., Qian, W. et al. An aberrant immune-epithelial progenitor niche drives viral lung sequelae. LID - 10.1038/s41586-024-07926-8.